Hybrid Techniques of Analyzing MRI Images for Early Diagnosis of Brain Tumours Based on Hybrid Features

Author:

Mohammed Badiea AbdulkaremORCID,Senan Ebrahim MohammedORCID,Alshammari Talal Sarheed,Alreshidi AbdulrahmanORCID,Alayba Abdulaziz M.ORCID,Alazmi MeshariORCID,Alsagri Afrah N.

Abstract

Brain tumours are considered one of the deadliest tumours in humans and have a low survival rate due to their heterogeneous nature. Several types of benign and malignant brain tumours need to be diagnosed early to administer appropriate treatment. Magnetic resonance (MR) images provide details of the brain’s internal structure, which allow radiologists and doctors to diagnose brain tumours. However, MR images contain complex details that require highly qualified experts and a long time to analyse. Artificial intelligence techniques solve these challenges. This paper presents four proposed systems, each with more than one technology. These techniques vary between machine, deep and hybrid learning. The first system comprises artificial neural network (ANN) and feedforward neural network (FFNN) algorithms based on the hybrid features between local binary pattern (LBP), grey-level co-occurrence matrix (GLCM) and discrete wavelet transform (DWT) algorithms. The second system comprises pre-trained GoogLeNet and ResNet-50 models for dataset classification. The two models achieved superior results in distinguishing between the types of brain tumours. The third system is a hybrid technique between convolutional neural network and support vector machine. This system also achieved superior results in distinguishing brain tumours. The fourth proposed system is a hybrid of the features of GoogLeNet and ResNet-50 with the LBP, GLCM and DWT algorithms (handcrafted features) to obtain representative features and classify them using the ANN and FFNN. This method achieved superior results in distinguishing between brain tumours and performed better than the other methods. With the hybrid features of GoogLeNet and hand-crafted features, FFNN achieved an accuracy of 99.9%, a precision of 99.84%, a sensitivity of 99.95%, a specificity of 99.85% and an AUC of 99.9%.

Funder

the Scientific Research Deanship at the University of Ha’il

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3