Application of U-Net Network Utilizing Multiattention Gate for MRI Segmentation of Brain Tumors

Author:

Zhang Qiong1ORCID,Hang Yiliu1,Qiu Jianlin,Chen Hao1

Affiliation:

1. College of Computer and Information Engineering, Nantong Institute of Technology

Abstract

Background Studies have shown that the type of low-grade glioma is associated with its shape. The traditional diagnostic method involves extraction of the tumor shape from MRIs and diagnosing the type of glioma based on corresponding relationship between the glioma shape and type. This method is affected by the MRI background, tumor pixel size, and doctors' professional level, leading to misdiagnoses and missed diagnoses. With the help of deep learning algorithms, the shape of a glioma can be automatically segmented, thereby assisting doctors to focus more on the diagnosis of glioma and improving diagnostic efficiency. The segmentation of glioma MRIs using traditional deep learning algorithms exhibits limited accuracy, thereby impeding the effectiveness of assisting doctors in the diagnosis. The primary objective of our research is to facilitate the segmentation of low-grade glioma MRIs for medical practitioners through the utilization of deep learning algorithms. Methods In this study, a UNet glioma segmentation network that incorporates multiattention gates was proposed to address this limitation. The UNet-based algorithm in the coding part integrated the attention gate into the hierarchical structure of the network to suppress the features of irrelevant regions and reduce the feature redundancy. In the decoding part, by adding attention gates in the fusion process of low- and high-level features, important feature information was highlighted, model parameters were reduced, and model sensitivity and accuracy were improved. Results The network model performed image segmentation on the glioma MRI dataset, and the accuracy and average intersection ratio (mIoU) of the algorithm segmentation reached 99.7%, 87.3%, 99.7%, and 87.6%. Conclusions Compared with the UNet, PSPNet, and Attention UNet network models, this network model has obvious advantages in accuracy, mIoU, and loss convergence. It can serve as a standard for assisting doctors in diagnosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Reference33 articles.

1. Mortality due to primary brain tumours in China and detection rate in people with suspected symptoms: a nationally representative cross-sectional survey;World J Surg Oncol,2021

2. The 2021 WHO classification of tumors of the central nervous system: a summary;Neuro Oncol,2021

3. Hybrid techniques of analyzing MRI images for early diagnosis of brain tumours based on hybrid features;Processes,2023

4. MRI-based brain tumor detection using convolutional deep learning methods and chosen machine learning techniques;BMC Med Inform Decis Mak,2023

5. Deep learning models and traditional automated techniques for brain tumor segmentation in MRI: a review;Artif Intell Rev,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3