Abstract
To improve the identification accuracy of gas pipeline leakage and reduce the false alarm rate, a pipeline leakage detection method based on improved uniform-phase local characteristic-scale decomposition (IUPLCD) and grid search algorithm-optimized twin-bounded support vector machine (GS-TBSVM) was proposed. First, the signal was decomposed into several intrinsic scale components (ISC) by the UPLCD algorithm. Then, the signal reconstruction process of UPLCD was optimized and improved according to the energy and standard deviation of the amplitude of each ISC, the ISC components dominated by the signal were selected for signal reconstruction, and the denoised signal was obtained. Finally, the TBSVM was optimized using a grid search algorithm, and a GS-TBSVM model for pipeline leakage identification was constructed. The input of the GS-TBSVM model was the data processed by the IUPLCD algorithm, and the output was the real-time working conditions of the gas pipeline. The experimental results show that IUPLCD can effectively filter the noise in the signal and GS-TBSVM can accurately judge the working conditions of the gas pipeline, with a maximum identification accuracy of 98.4%.
Funder
National Natural Science Foundation of China
Educational Department of Liaoning Province
Department of Science and Technology of Liaoning Province
China Postdoctoral Science Foundation
Liaoning Shihua University
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献