An intelligent water supply pipeline leakage detection method based on SV-WTBSVM

Author:

Guo XiaotingORCID,Song Huadong,Zeng Yanli,Chen Honghe,Hu Wenguang,Liu Guanlin

Abstract

Abstract Water supply pipeline leakage not only wastes resources but also causes dangerous accidents. Therefore, detecting the state of pipelines is a critical task. With the expansion of the scale of the water supply pipeline, the amount of data collected by the leak detection system is gradually increasing. Moreover, there is an imbalance of sample in the data. This makes the detection performance of traditional leakage detection methods deteriorate. To solve the above issues, this paper proposes a pipeline leakage intelligent detection method based on a support vector weighted twin-bound support vector machine (SV-WTBSVM). Noise in the data negatively affects the performance of the classifier. To eliminate the effect of noise, a hybrid denoising algorithm based on improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) is used for denoising to filter out the noise in the data. Twin bound support vector machine (TBSVM) is a classical classification algorithm that has been widely used in the detection of pipeline leakage. To solve the decrease in classification accuracy caused by sample imbalance, the SV-WTBSVM algorithm oversamples the minority class samples based on the distance density and integrally undersamples the majority class samples to obtain a balanced sample. Since pipelines often have multiple working conditions, the SV-WTBSVM used for binary classification cannot meet this requirement, and this paper combines the SV-WTBSVM with the ‘one-to-one’ strategy to address the multi-classification problem. Finally, experiments have verified that the SV-WTBSVM algorithm not only retains the advantages of fast training speed and simple operation of the TBSVM but also improves the classification accuracy and generalization ability of the algorithm when dealing with imbalanced data.

Funder

Natural Science Foundation of Liaoning Province

National Natural Science Foundation of China

Scientific Research Funds of Liaoning Provincial Department of Education

China Postdoctoral Science Foundation

Talent Scientific Research Fund of LSHU

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3