On Unit Exponential Pareto Distribution for Modeling the Recovery Rate of COVID-19

Author:

Haj Ahmad HananORCID,Almetwally Ehab M.ORCID,Elgarhy MohammedORCID,Ramadan Dina A.ORCID

Abstract

In 2019, a new lethal and mutant virus (COVID-19) spread around the world, causing the deaths of millions of people. COVID-19 demonstrates that scientists are involved in significant research efforts to face bacteria with less effort than that dedicated to viruses. Since then, engineers and bio-materials scientists have been trying to develop antiviral research and find a suitable effective medication. Strategies and opportunities for interference diagnostics, treatment strategies, and predicting future factors became mandatory. From a statistical point of view, estimating and modelling these factors play an important role in preventing future viral epidemics. In this article, modelling the recovery rate of COVID-19 is investigated through a new distribution which is called the unit exponential Pareto distribution. The new continuous distribution with three parameters displays a prominent level of flexibility to model decreasing, symmetric, and asymmetric data with a monotone failure rate. The recovery rates of COVID-19 in Turkey and France were examined; moreover, milk production data and components’ failure rates are presented for data modeling. The obtained results proved the superiority of the newly suggested model compared to other unit-based distributions. Several statistical features are studied such as the quantile function, the moments, the moment-generating function, some entropy measures, the ordered statistics, the stress–strength, and stochastic ordering. Two classical estimation methods are used in addition to the Bayesian method. The statistical features and estimation analysis are evaluated using numerical and simulation techniques. As a result, we obtain the efficiency of using the Bayesian method over the classical ones, with respect to the bias, average squared error, and the length of confidence intervals for the unknown parameters.

Funder

the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3