Unit-Power Half-Normal Distribution Including Quantile Regression with Applications to Medical Data

Author:

Santoro Karol I.1ORCID,Gómez Yolanda M.2ORCID,Soto Darlin2ORCID,Barranco-Chamorro Inmaculada3ORCID

Affiliation:

1. Departamento de Estadística y Ciencia de Datos, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta 1240000, Chile

2. Departamento de Estadística, Facultad de Ciencias, Universidad del Bío-Bío, Concepción 4081112, Chile

3. Departamento de Estadística e Investigación Operativa, Facultad de Matemáticas, Universidad de Sevilla, 41012 Sevilla, Spain

Abstract

In this paper, we present the unit-power half-normal distribution, derived from the power half-normal distribution, for data analysis in the open unit interval. The statistical properties of the unit-power half-normal model are described in detail. Simulation studies are carried out to evaluate the performance of the parameter estimators. Additionally, we implement the quantile regression for this model, which is applied to two real healthcare data sets. Our findings suggest that the unit power half-normal distribution provides a robust and flexible alternative for existing models for proportion data.

Funder

the IOAP of the University of Seville

Publisher

MDPI AG

Reference33 articles.

1. Kumaraswamy’s Distribution: A Beta-Type Distribution with Some Tractability Advantages;Jones;Stat. Methodol.,2009

2. The Log-Lindley distribution as an alternative to the beta regression model with applications in insurance;Sordo;Insur. Math. Econ.,2014

3. A new one-parameter unit Lindley distribution;Mazucheli;Chil. J. Stat.,2019

4. A new quantile regression model for modelling child mortality;Seyam;Int. J. Biomath.,2022

5. The unit-improved second-degree Lindley distribution: Inference and regression modelling;Altun;Comput. Stat.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3