An Optimal Resonant Frequency Band Feature Extraction Method Based on Empirical Wavelet Transform

Author:

Feng Zezhong,Ma Jun,Wang Xiaodong,Wu Jiande,Zhou Chengjiang

Abstract

The Empirical Wavelet Transform (EWT), which has a reliable mathematical derivation process and can adaptively decompose signals, has been widely used in mechanical applications, EEG, seismic detection and other fields. However, the EWT still faces the problem of how to optimally divide the Fourier spectrum during the application process. When there is noise interference in the analyzed signal, the parameterless scale-space histogram method will divide the spectrum into a variety of narrow bands, which will weaken or even fail to extract the fault modulation information. To accurately determine the optimal resonant demodulation frequency band, this paper proposes a method for applying Adaptive Average Spectral Negentropy (AASN) to EWT analysis (AEWT): Firstly, the spectrum is segmented by the parameterless clustering scale-space histogram method to obtain the corresponding empirical mode. Then, by comprehensively considering the Average Spectral Negentropy (ASN) index and correlation coefficient index on each mode, the correlation coefficient is used to adjust the ASN value of each mode, and the IMF with the highest value is used as the center frequency band of the fault information. Finally, a new resonant frequency band is reconstructed for the envelope demodulation analysis. The experimental results of different background noise intensities show that the proposed method can effectively detect the repetitive transients in the signal.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3