Research on Fault Feature Extraction Method Based on Parameter Optimized Variational Mode Decomposition and Robust Independent Component Analysis

Author:

Yang Jingzong,Zhou ChengjiangORCID,Li Xuefeng

Abstract

The variational mode decomposition mode (VMD) has a reliable mathematical derivation and can decompose signals adaptively. At present, it has been widely used in mechanical fault diagnosis, financial analysis and prediction, geological signal analysis, and other fields. However, VMD has the problems of insufficient decomposition and modal aliasing due to the unclear selection method of modal component k and penalty factor α. Therefore, it is difficult to ensure the accuracy of fault feature extraction and fault diagnosis. To effectively extract fault feature information from bearing vibration signals, a fault feature extraction method based on VMD optimized with information entropy, and robust independent component analysis (RobustICA) was proposed. Firstly, the modal component k and penalty factor α in VMD were optimized by the principle of minimum information entropy to improve the effect of signal decomposition. Secondly, the optimal parameters weresubstituted into VMD, and several intrinsic mode functions (IMFs) wereobtained by signal decomposition. Secondly, the kurtosis and cross-correlation coefficient criteria were comprehensively used to evaluate the advantages and disadvantages of each IMF.And then, the optimal IMFs were selected to construct the observation signal channel to realize the signal-to-noise separation based on RobustICA. Finally, the envelope demodulation analysis of the denoised signal was carried out to extract the fault characteristic frequency. Through the analysis of bearing simulation signal and actual data, it shows that this method can extract the weak characteristics of rolling bearing fault signal and realize the accurate identification of fault. Meanwhile, in the bearing simulation signal experiment, the results of kurtosis value, cross-correlation coefficient, root mean square error, and mean absolute error are 6.162, 0.681, 0.740, and 0.583, respectively. Compared with other traditional methods, better index evaluation value is obtained.

Funder

Scientific research fund project of Baoshan University

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3