Benchmarking 2D Multi-Object Detection and Tracking Algorithms in Autonomous Vehicle Driving Scenarios

Author:

Gragnaniello Diego1ORCID,Greco Antonio1ORCID,Saggese Alessia1ORCID,Vento Mario1ORCID,Vicinanza Antonio1ORCID

Affiliation:

1. Department of Information and Electrical Engineering and Applied Mathematics, University of Salerno, 84084 Fisciano, Italy

Abstract

Self-driving vehicles must be controlled by navigation algorithms that ensure safe driving for passengers, pedestrians and other vehicle drivers. One of the key factors to achieve this goal is the availability of effective multi-object detection and tracking algorithms, which allow to estimate position, orientation and speed of pedestrians and other vehicles on the road. The experimental analyses conducted so far have not thoroughly evaluated the effectiveness of these methods in road driving scenarios. To this aim, we propose in this paper a benchmark of modern multi-object detection and tracking methods applied to image sequences acquired by a camera installed on board the vehicle, namely, on the videos available in the BDD100K dataset. The proposed experimental framework allows to evaluate 22 different combinations of multi-object detection and tracking methods using metrics that highlight the positive contribution and limitations of each module of the considered algorithms. The analysis of the experimental results points out that the best method currently available is the combination of ConvNext and QDTrack, but also that the multi-object tracking methods applied on road images must be substantially improved. Thanks to our analysis, we conclude that the evaluation metrics should be extended by considering specific aspects of the autonomous driving scenarios, such as multi-class problem formulation and distance from the targets, and that the effectiveness of the methods must be evaluated by simulating the impact of the errors on driving safety.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3