Machine Learning-Based Cooperative Spectrum Sensing in Dynamic Segmentation Enabled Cognitive Radio Vehicular Network

Author:

Hossain Mohammad AsifORCID,Md Noor RafidahORCID,Yau Kok-Lim Alvin,Azzuhri Saaidal RazalliORCID,Z’aba Muhammad Reza,Ahmedy IsmailORCID,Jabbarpour Mohammad RezaORCID

Abstract

A vehicle ad hoc network (VANET) is a solution for road safety, congestion management, and infotainment services. Integration of cognitive radio (CR), known as CR-VANET, is needed to solve the spectrum scarcity problems of VANET. Several research efforts have addressed the concerns of CR-VANET. However, more reliable, robust, and faster spectrum sensing is still a challenge. A novel segment-based CR-VANET (Seg-CR-VANET) architecture is therefore proposed in this paper. Roads are divided equally into segments, and they are sub-segmented based on the probability value. Individual vehicles or secondary users produce local sensing results by choosing an optimal spectrum sensing (SS) technique using a hybrid machine learning algorithm that includes fuzzy and naïve Bayes algorithms. We used dynamic threshold values for the sensing techniques. In this proposed cooperative SS, the segment spectrum agent (SSA) made the global decision using the tri-agent reinforcement learning (TA-RL) algorithm. Three environments (network, signal, and vehicle) are learned by this proposed algorithm to determine primary (licensed) users’ activities. The simulation results indicate that, compared to current works, the proposed Seg-CR-VANET produces better results in spectrum sensing.

Funder

Sunway University and University of Malaya

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3