Abstract
Spectrum starvation is a key challenge for wireless services and applications in vehicular networks with serious negative implications for traffic safety and transportation efficiency. As a promising solution, cognitive radio (CR) allows CR-enabled vehicles to access the spectrum holes of primary users (PUs) in an opportunistic manner, but requires a robust sensing mechanism to provide adequate protection for PUs. However, highly dynamic environments make spectrum sensing an increasingly difficult problem. For example, vehicular communications are subject to multipath fading due to vehicle mobility. In this paper, the wireless channels in vehicular environments are considered to be subject to time-correlated Rayleigh fading. To facilitate the analysis, temporal correlation could be classified into complete correlation, partial correlation and complete independence according to the degree of correlation. The performance of cooperative sensing scheme is investigated for soft fusion (SF) and hard fusion (HF) approaches. The simulation results are presented to verify our theoretical analysis for varying conditions and scenarios. The results indicate that the detecting performance could be importantly influenced by channel correlation, which can be improved by vehicles’ cooperation.
Funder
Southwest Jiaotong University
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献