Numerical Investigation of the Geometrical Effect on Flow-Induced Vibration Performance of Pivoted Bodies

Author:

Arionfard HamidORCID,Mohammadi SinaORCID

Abstract

In this study, the Flow-Induced Vibration (FIV) of pivoted cylinders (at a distance) is numerically investigated as a potential source of energy harvesting. In particular, we investigate the effect of pivot point placement, arm length, and natural frequency on the FIV performance of six different cross sections in the Reynolds number of around 1000. All sections have similar mass, area, and moment of inertia to eliminate non-geometrical effects on the performance. Classical studies show that the synchronization phenomenon (lock-in) occurs when the vortex formation frequency is close enough to the body’s natural frequency. Due to the configuration of the cylinder in this research (pivoted eccentrically), the natural frequency is also a function of the flow velocity as well as the geometrical specifications of the system. The simulation is done for the arm lengths between −3D and +3D for all cross sections. Results show that maximum output power is principally influenced more by the pivot location than the arm length. Although the box cross section has a higher amplitude of vibration, the circular cross section has the highest efficiency followed by the egg shape.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3