Prediction of the Degree of Polymerization in Transformer Cellulose Insulation Using the Feedforward Backpropagation Artificial Neural Network

Author:

Thango Bonginkosi A.ORCID,Bokoro Pitshou N.ORCID

Abstract

The life expectancy of power transformers is primarily determined by the integrity of the insulating oil and cellulose paper between the conductor turns, phases and phase to earth. During the course of their in-service lifetime, the solid insulating system of windings is contingent on long-standing ageing and decomposition. The decomposition of the cellulose paper insulation is strikingly grievous, as it reduces the tensile strength of the cellulose paper and can trigger premature failure. The latter can trigger premature failure, and to realize at which point during the operational life this may occur is a daunting task. Various methods of estimating the DP have been proposed in the literature; however, these methods yield different results, making it difficult to accurately estimate a reliable DP. In this work, a novel approach based on the Feedforward Backpropagation Artificial Neural Network has been proposed to predict the amount of DP in transformer cellulose insulation. Presently, no ANN model has been proposed to predict the remaining DP using 2FAL concentration. A databank comprising 100 data sets—70 for training and 30 for testing—is used to develop the proposed ANN using 2-furaldehyde (2FAL) as an input and DP as an output. The proposed model yields a correlation coefficient of 0.958 for training, 0.915 for validation, 0.996 for testing and an overall correlation of 0.958 for the model.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3