Commercial Vacancy Prediction Using LSTM Neural Networks

Author:

Lee Jaekyung,Kim HyunwooORCID,Kim HyungkyooORCID

Abstract

Previous studies on commercial vacancy have mostly focused on the survival rate of commercial buildings over a certain time frame and the cause of their closure, due to a lack of appropriate data. Based on a time-series of 2,940,000 individual commercial facility data, the main purpose of this research is two-fold: (1) to examine long short-term memory (LSTM) as a feasible option for predicting trends in commercial districts and (2) to identify the influence of each variable on prediction results for establishing evidence-based decision-making on the primary influences of commercial vacancy. The results indicate that LSTM can be useful in simulating commercial vacancy dynamics. Furthermore, sales, floating population, and franchise rate were found to be the main determinants for commercial vacancy. The results suggest that it is imperative to control the cannibalization of commercial districts and develop their competitiveness to retain a consistent floating population.

Funder

the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference45 articles.

1. Measuring the Default Risk of Small Business Loans: A Survival Analysis Approach

2. Barriers to the advancement of modern food retail formats: theory and measurement

3. Survival Analysis: A Self-Learning Text;Klein,2012

4. Structural relationship between rent and vacancy rate in the office rental market of Seoul;Ryu;J. Korea Real Estate Anal. Assoc.,2012

5. The Effects of Homogeneous and Heterogeneous Spatial Clustering Characteristics on Retail Sales in Seoul

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3