Effects of Crop and Grass Intercropping on the Soil Environment in the Karst Area

Author:

Xu Qinqin,Xiong Kangning,Chi Yongkuan,Song Shuzhen

Abstract

The karst area in Southwest China is facing the challenges of environmental degradation and agricultural safety. Intercropping is a green and efficient planting mode that can make full use of the differences in crops’ physiological and ecological characteristics and land and climate resources while considering the environmental and yield benefits. This study selected five treatments: Salvia miltiorrhiza monoculture, Dactylis glomerata intercropped with S. miltiorrhiza, Cichorium intybus intercropped with S.miltiorrhiza, Trifolium repens intercropped with S.miltiorrhiza, and Lolium perenne intercropped with S.miltiorrhiza. Using one-way ANOVA, principle component analysis (PCA), and linear correlation analysis, we analyzed the changes in the soil physicochemical factors and the coupling relationship between them in the intercropping mode. The results showed that at different soil depths, the soil bulk density in the intercropping mode was significantly lower than that in the single cropping mode (p < 0.05), and the soil water content and total porosity were significantly increased (p < 0.05). There were no significant differences in soil pH among the five models (p > 0.05), the content of soil organic matter was significantly higher than that in the single cropping mode (p < 0.05), and the content of nitrogen and phosphorus also showed different changes. The correlation analysis showed that there was no significant correlation between the pH and soil physical properties (p > 0.05); bulk density and chemical properties were negatively correlated, while the soil water content, field water-holding capacity, and total porosity were significantly positively correlated with the chemical properties (p > 0.05). Therefore, it is suggested to strengthen the management of agricultural grass intercropping, improve soil pore structure, regulate the distribution of soil water and fertilizer, and improve the resilience of agricultural systems in the karst area of southwest China.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3