Transcription Factor OpWRKY3 Is Involved in the Development and Biosynthesis of Camptothecin and Its Precursors in Ophiorrhiza pumila Hairy Roots

Author:

Wang Can,Wu Chao,Wang Yao,Xie Chenhong,Shi Min,Nile Shivraj,Zhou ZhigangORCID,Kai GuoyinORCID

Abstract

The plant Ophiorrhiza pumila produces camptothecin (CPT), a kind of terpene indole alkaloid (TIAs) that has been widely used in treatment of cancer. Tryptophan-arginine-lysine-tyrosine (WRKY) transcription factors have been reported to play important roles in plant metabolism and development. In this study, a novel WRKY transcription factor named OpWRKY3 was isolated from O. pumila, with full-length open reading frame (ORF) of 1128 bp, encoding 375 amino acids. Phylogenetic tree analysis revealed that OpWRKY3 shared the highest homology with VvWRKY30, and it is a significant feature belonging to group III. OpWRKY3 was responsive to various treatments, including gibberellin (GA3), methyl jasmonate (MJ), acetylsalicylic acid (ASA), salicylic acid (SA), and abscisic acid (ABA). Besides, OpWRKY3 is expressed predominantly in stems. Subcellular localization analysis showed that OpWRKY3 localized in the nucleus. The biomass of OpWRKY3-SRDX transgenic hairy roots (S line) was visibly suppressed, while there were slight changes between overexpression of the OpWRKY3 line (OE line) and the control. In addition, the concentration and total production of camptothecin precursors including loganin and secologanin were significantly changed in both OE and S lines while total production of CPT was significantly changed in most transgenic lines. Thus, the present work revealed that OpWRKY3 may act as a regulator in the growth and development of O. pumila, and in production of camptothecin and its precursors.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3