AFTR: A Robustness Multi-Sensor Fusion Model for 3D Object Detection Based on Adaptive Fusion Transformer

Author:

Zhang Yan1,Liu Kang1ORCID,Bao Hong2,Qian Xu1,Wang Zihan1,Ye Shiqing1,Wang Weicen1

Affiliation:

1. School of Artificial Intelligence, China University of Mining and Technology-Beijing, Beijing 100083, China

2. College of Robotics, Beijing Union University, Beijing 100027, China

Abstract

Multi-modal sensors are the key to ensuring the robust and accurate operation of autonomous driving systems, where LiDAR and cameras are important on-board sensors. However, current fusion methods face challenges due to inconsistent multi-sensor data representations and the misalignment of dynamic scenes. Specifically, current fusion methods either explicitly correlate multi-sensor data features by calibrating parameters, ignoring the feature blurring problems caused by misalignment, or find correlated features between multi-sensor data through global attention, causing rapidly escalating computational costs. On this basis, we propose a transformer-based end-to-end multi-sensor fusion framework named the adaptive fusion transformer (AFTR). The proposed AFTR consists of the adaptive spatial cross-attention (ASCA) mechanism and the spatial temporal self-attention (STSA) mechanism. Specifically, ASCA adaptively associates and interacts with multi-sensor data features in 3D space through learnable local attention, alleviating the problem of the misalignment of geometric information and reducing computational costs, and STSA interacts with cross-temporal information using learnable offsets in deformable attention, mitigating displacements due to dynamic scenes. We show through numerous experiments that the AFTR obtains SOTA performance in the nuScenes 3D object detection task (74.9% NDS and 73.2% mAP) and demonstrates strong robustness to misalignment (only a 0.2% NDS drop with slight noise). At the same time, we demonstrate the effectiveness of the AFTR components through ablation studies. In summary, the proposed AFTR is an accurate, efficient, and robust multi-sensor data fusion framework.

Funder

Key Project of National Nature Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3