Author:
Proteau Alex,Guittonny Marie,Bussière Bruno,Maqsoud Abdelkabir
Abstract
Acid mine drainage is an important environmental risk linked to the surface storage of reactive mine tailings. To manage this problem, a cover with a capillary barrier effect (CCBE) can be used. This oxygen barrier cover relies on maintaining a fine-grained material layer (moisture-retaining layer, MRL) with a high degree of saturation. CCBEs can be colonized by surrounding plants. Plant roots pump water and could impact CCBE’s performance. This performance is predicted with unsaturated water flow numerical models in which vegetation parameters can be included. Vegetation parameters may be specific in a CCBE environment. Therefore, analyzing and quantifying the vegetation that colonizes this type of cover is necessary. Plant colonization was investigated through cover and density surveys on 12 transects on a 17-year-old CCBE in the mixed forest of Quebec, Canada. Then, aboveground vegetation and root colonization intensity at three depths in the MRL were characterized on 25 plots of five dominant vegetation types (Salix, Populus, Alnus, Picea sp., and herbaceous species). The mean root length density under plots dominated by Salix sp. was higher than in the other plots. Root colonization of the MRL was concentrated in the first 10 cm and occurred under all woody and herbaceous species as well. This work quantitatively describes, for the first time, the vegetation colonizing a CCBE both at the above- and belowground levels. These data will be useful to better predict the long-term performance of this engineered reclamation cover.
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献