Reduction of acid generation in mine tailings through the use of moisture-retaining cover layers as oxygen barriers

Author:

Nicholson Ronald V.,Gillham Robert W.,Cherry John A.,Reardon Eric J.

Abstract

Acid production in sulphidic tailings can cause severe degradation of water quality in both subsurface and surface systems. The availability of gaseous oxygen and the rate of diffusion of oxygen through the open pore spaces in the upper zone of the tailings are the critical factors controlling the rate of acid generation. Acid generation can be reduced by applying a fine-grained, nonreactive cover layer to the tailings surface. The key process involves moisture retention by capillary forces so that near-saturated conditions can be maintained even when the cover layer occurs at several metres above the water table. Textured layering of fine over coarse materials improves moisture retention in the fine layer when infiltration exceeds evapotranspiration. The application of such a cover layer can theoretically reduce oxygen diffusion coefficients and rates of acid generation by up to four orders of magnitude. This can represent a substantial difference in the potential treatment costs of tailings seepage. Simplified calculations based on Fick's first law can be applied to preliminary laboratory measurements of diffusion characteristics of potential cover materials to evaluate their effectiveness in decreasing acidification. These concepts and methods provide an initial evaluation before field-scale testing of cover performance. Key words: pyrite oxidation, tailings, remediation, covers, acid generation, oxygen diffusion.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3