Enhancing P300-Based Brain-Computer Interfaces with Hybrid Transfer Learning: A Data Alignment and Fine-Tuning Approach

Author:

Kilani Sepideh1ORCID,Aghili Seyedeh Nadia1,Hulea Mircea2ORCID

Affiliation:

1. Department of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran 13114-16846, Iran

2. Department of Computer Engineering, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania

Abstract

A new approach is introduced to address the subject dependency problem in P300-based brain-computer interfaces (BCI) by using transfer learning. The occurrence of P300, an event-related potential, is primarily associated with changes in natural neuron activity and elicited in response to infrequent stimuli, which can be monitored non-invasively through an electroencephalogram. However, implementing P300-based BCI in real-time requires many training samples and time-consuming calibration, making it challenging to use in practical applications. To tackle these challenges, the proposed approach harnesses the high-level feature extraction capability of a deep neural network, achieved through fine-tuning. To ensure similar distributions of feature extraction data, the approach of aligning data in Euclidean space is employed, which is then applied to a discriminatively restricted Boltzmann machine with a single layer for P300 detection. The performance of the proposed method on the BCI Competition III dataset II and the BCI competition II dataset II, the state-of-the-art dataset, was evaluated and compared with previous studies. The results showed that robust performance could be achieved using a small number of training samples, demonstrating the effectiveness of the transfer learning approach in P300-based BCI applications.

Funder

COST Action 19111 NEWFOCUS

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. EEGNet-based multi-source domain filter for BCI transfer learning;Medical & Biological Engineering & Computing;2023-11-20

2. BnSepCNN: Convolutional Neural Network for P300 Detection;2023 IEEE 4th International Conference on Pattern Recognition and Machine Learning (PRML);2023-08-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3