Author:
Kamhi Souha,Zhang Shuai,Ait Amou Mohamed,Mouhafid Mohamed,Javaid Imran,Ahmad Isah Salim,Abd El Kader Isselmou,Kulsum Ummay
Abstract
Motor Imagery (MI) classification using electroencephalography (EEG) has been extensively applied in healthcare scenarios for rehabilitation aims. EEG signal decoding is a difficult process due to its complexity and poor signal-to-noise ratio. Convolutional neural networks (CNN) have demonstrated their ability to extract time–space characteristics from EEG signals for better classification results. However, to discover dynamic correlations in these signals, CNN models must be improved. Hyperparameter choice strongly affects the robustness of CNNs. It is still challenging since the manual tuning performed by domain experts lacks the high performance needed for real-life applications. To overcome these limitations, we presented a fusion of three optimum CNN models using the Average Ensemble strategy, a method that is utilized for the first time for MI movement classification. Moreover, we adopted the Bayesian Optimization (BO) algorithm to reach the optimal hyperparameters’ values. The experimental results demonstrate that without data augmentation, our approach reached 92% accuracy, whereas Linear Discriminate Analysis, Support Vector Machine, Random Forest, Multi-Layer Perceptron, and Gaussian Naive Bayes achieved 68%, 70%, 58%, 64%, and 40% accuracy, respectively. Further, we surpassed state-of-the-art strategies on the BCI competition IV-2a multiclass MI database by a wide margin, proving the benefit of combining the output of CNN models with automated hyperparameter tuning.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献