Effects of the Hyperparameters on CNNs for MDD Classification Using Resting-State EEG

Author:

Yang Chia-Yen1,Lee Hsin-Min2ORCID

Affiliation:

1. Department of Biomedical Engineering, Ming-Chuan University, Taoyuan 333321, Taiwan

2. Department of Physical Therapy, I-Shou University, Kaohsiung 840301, Taiwan

Abstract

To monitor patients with depression, objective diagnostic tools that apply biosignals and exhibit high repeatability and efficiency should be developed. Although different models can help automatically learn discriminative features, inappropriate adoption of input forms and network structures may cause performance degradation. Accordingly, the aim of this study was to systematically evaluate the effects of convolutional neural network (CNN) architectures when using two common electroencephalography (EEG) inputs on the classification of major depressive disorder (MDD). EEG data for 21 patients with MDD and 21 healthy controls were obtained from an open-source database. Five hyperparameters (i.e., number of convolutional layers, filter size, pooling type, hidden size, and batch size) were then evaluated. Finally, Grad-CAM and saliency map were applied to visualize the trained models. When raw EEG signals were employed, optimal performance and efficiency were achieved as more convolutional layers and max pooling were used. Furthermore, when mixed features were employed, a larger hidden layer and smaller batch size were optimal. Compared with other complex networks, this configuration involves a relatively small number of layers and less training time but a relatively high accuracy. Thus, high accuracy (>99%) can be achieved in MDD classification by using an appropriate combination in a simple model.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference38 articles.

1. Pathophysiology of depression and mechanisms of treatment;Brigitta;Dialogues Clin. Neurosci.,2002

2. Molecular mechanisms of depression: Perspectives on new treatment strategies;Lang;Cell Physiol. Biochem.,2013

3. Predicting anxiety and depression in elderly patients using machine learning technology;Sau;Healthc. Technol. Lett.,2017

4. COVID-19 Mental Disorders Collaborators (2021). Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet, 398, 1700–1712.

5. Automated diagnosis of depression from EEG signals using traditional and deep learning approaches: A comparative analysis;Khosla;Biocybern. Biomed. Eng.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3