BILSTM-Based Deep Neural Network for Rock-Mass Classification Prediction Using Depth-Sequence MWD Data: A Case Study of a Tunnel in Yunnan, China

Author:

Cheng Xu12,Tang Hua12,Wu Zhenjun12,Liang Dongcai12ORCID,Xie Yachen3

Affiliation:

1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China

Abstract

Measurement while drilling (MWD) data reflect the drilling rig–rock mass interaction; they are crucial for accurately classifying the rock mass ahead of the tunnel face. Although machine-learning methods can learn the relationship between MWD data and rock mechanics parameters to support rock classification, most current models do not consider the impact of the continuous drilling-sequence process, thereby leading to rock-classification errors, while small and unbalanced field datasets result in poor model performance. We propose a novel deep neural network model based on Bi-directional Long Short-Term Memory (BILSTM) to extract information-related sequences in MWD data and improve the accuracy of the rock-mass classification. Two optimization modules were designed to improve the model’s generalization performance. Stratified K-fold cross-validation was used for model optimization in small and unbalanced datasets. Model validation is based on the MWD dataset of a highway tunnel in Yunnan, China. Multiple metrics show that the prediction ability of the network is significantly better than those of a multilayer perceptron (MLP) and a support-vector machine (SVM), while the model exhibits an improved generalization performance. The accuracy of the network can reach 90%, which is 13% and 15% higher than the MLP and SVM, respectively.

Funder

Traffic Science and Technology Project of Yunnan Province, China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3