How Response Designs and Class Proportions Affect the Accuracy of Validation Data

Author:

Radoux Julien,Waldner FrançoisORCID,Bogaert Patrick

Abstract

Reference data collected to validate land-cover maps are generally considered free of errors. In practice, however, they contain errors despite best efforts to minimize them. These errors propagate during accuracy assessment and tweak the validation results. For photo-interpreted reference data, the two most widely studied sources of error are systematic incorrect labeling and vigilance drops. How estimation errors, i.e., errors intrinsic to the response design, affect the accuracy of reference data is far less understood. In this paper, we analyzed the impact of estimation errors for two types of classification systems (binary and multiclass) as well as for two common response designs (point-based and partition-based) with a range of sub-sample sizes. Our quantitative results indicate that labeling errors due to proportion estimations should not be neglected. They further confirm that the accuracy of response designs depends on the class proportions within the sampling units, with complex landscapes being more prone to errors. As a result, response designs where the number of sub-samples is predefined and fixed are inefficient. To guarantee high accuracy standards of validation data with minimum data collection effort, we propose a new method to adapt the number of sub-samples for each sample during the validation process. In practice, sub-samples are incrementally selected and labeled until the estimated class proportions reach the desired level of confidence. As a result, less effort is spent on labeling univocal cases and the spared effort can be allocated to more ambiguous cases. This increases the reliability of reference data and of subsequent accuracy assessment. Across our study site, we demonstrated that such an approach could reduce the labeling effort by 50% to 75%, with greater gains in homogeneous landscapes. We contend that adopting this optimization approach will not only increase the efficiency of reference data collection, but will also help deliver more reliable accuracy estimates to the user community.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3