Mountain Tree Species Mapping Using Sentinel-2, PlanetScope, and Airborne HySpex Hyperspectral Imagery

Author:

Kluczek Marcin1ORCID,Zagajewski Bogdan1ORCID,Zwijacz-Kozica Tomasz2ORCID

Affiliation:

1. Department of Geoinformatics, Cartography and Remote Sensing, Chair of Geomatics and Information Systems, Faculty of Geography and Regional Studies, University of Warsaw, 00-927 Warszawa, Poland

2. Tatra National Park, Kuźnice 1, 34-500 Zakopane, Poland

Abstract

Europe’s mountain forests, which are naturally valuable areas due to their high biodiversity and well-preserved natural characteristics, are experiencing major alterations, so an important component of monitoring is obtaining up-to-date information concerning species composition, extent, and location. An important aspect of mapping tree stands is the selection of remote sensing data that vary in temporal, spectral, and spatial resolution, as well as in open and commercial access. For the Tatra Mountains area, which is a unique alpine ecosystem in central Europe, we classified 13 woody species by iterative machine learning methods using random forest (RF) and support vector machine (SVM) algorithms of more than 1000 polygons collected in the field. For this task, we used free Sentinel-2 multitemporal satellite data (10 m pixel size, 12 spectral bands, and 21 acquisition dates), commercial PlanetScope data (3 m pixel size, 8 spectral bands, and 3 acquisitions dates), and airborne HySpex hyperspectral data (2 m pixel size, 430 spectral bands, and a single acquisition) with fusion of the data of topographic derivatives based on Shuttle Radar Topography Mission (SRTM) and airborne laser scanning (ALS) data. The iterative classification method achieved the highest F1-score with HySpex (0.95 RF; 0.92 SVM) imagery, but the multitemporal Sentinel-2 data cube, which consisted of 21 scenes, offered comparable results (0.93 RF; 0.89 SVM). The three images of the high-resolution PlanetScope produced slightly less accurate results (0.89 RF; 0.87 SVM).

Funder

Faculty of Geography and Regional Studies, University of Warsaw

IDUB of the University of Warsaw

Ministry of Education and Science

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3