Abstract
Clouds limit the quality and availability of optical wavelength surface observations from Earth Observation (EO) satellites. This limitation is particularly relevant for the generation of systematic thematic products from EO medium spatial resolution polar orbiting sensors, such as Landsat, which have reduced temporal resolution compared to coarser resolution polar orbiting sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS). MODIS on the Terra satellite is in the same orbit as Landsat 7 with an approximately 30 minute overpass difference. In this study, one year of global Landsat 7 Enhanced Thematic Mapper Plus (ETM+) image cloud fractions over land are compared with collocated MODIS cloud fractions, generated by combining the MODIS-Terra global daily cloud mask product (MOD35) with the Landsat 7 ETM+ image footprints and acquisition calendar. The results show high correlation between the MODIS and Landsat 7 ETM+ cloud fractions (R2 = 0.83), negligible bias (median difference: <0.01) and low dispersion around the median (interquartile range: [−0.02, 0.06]). These results indicate that, globally, the cloud cover detected by MODIS-Terra data can be used as a proxy for Landsat 7 ETM+ cloud cover.
Subject
General Earth and Planetary Sciences
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献