CloudSEN12, a global dataset for semantic understanding of cloud and cloud shadow in Sentinel-2

Author:

Aybar CesarORCID,Ysuhuaylas LuisORCID,Loja Jhomira,Gonzales KarenORCID,Herrera FernandoORCID,Bautista LeslyORCID,Yali Roy,Flores AngieORCID,Diaz LissetteORCID,Cuenca NicoleORCID,Espinoza WendyORCID,Prudencio FernandoORCID,Llactayo ValeriaORCID,Montero DavidORCID,Sudmanns Martin,Tiede DirkORCID,Mateo-García Gonzalo,Gómez-Chova LuisORCID

Abstract

AbstractAccurately characterizing clouds and their shadows is a long-standing problem in the Earth Observation community. Recent works showcase the necessity to improve cloud detection methods for imagery acquired by the Sentinel-2 satellites. However, the lack of consensus and transparency in existing reference datasets hampers the benchmarking of current cloud detection methods. Exploiting the analysis-ready data offered by the Copernicus program, we created CloudSEN12, a new multi-temporal global dataset to foster research in cloud and cloud shadow detection. CloudSEN12 has 49,400 image patches, including (1) Sentinel-2 level-1C and level-2A multi-spectral data, (2) Sentinel-1 synthetic aperture radar data, (3) auxiliary remote sensing products, (4) different hand-crafted annotations to label the presence of thick and thin clouds and cloud shadows, and (5) the results from eight state-of-the-art cloud detection algorithms. At present, CloudSEN12 exceeds all previous efforts in terms of annotation richness, scene variability, geographic distribution, metadata complexity, quality control, and number of samples.

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CloudSEN12+: The largest dataset of expert-labeled pixels for cloud and cloud shadow detection in Sentinel-2;Data in Brief;2024-10

2. Mapping Planted Forests in the Korean Peninsula Using Artificial Intelligence;Forests;2024-07-12

3. Recurrent Neural Networks for Modelling Gross Primary Production;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

4. On-Demand Earth System Data Cubes;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

5. Major TOM: Expandable Datasets for Earth Observation;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3