Abstract
Accurate automated segmentation of remote sensing data could benefit applications from land cover mapping and agricultural monitoring to urban development surveyal and disaster damage assessment. While convolutional neural networks (CNNs) achieve state-of-the-art accuracy when segmenting natural images with huge labeled datasets, their successful translation to remote sensing tasks has been limited by low quantities of ground truth labels, especially fully segmented ones, in the remote sensing domain. In this work, we perform cropland segmentation using two types of labels commonly found in remote sensing datasets that can be considered sources of “weak supervision”: (1) labels comprised of single geotagged points and (2) image-level labels. We demonstrate that (1) a U-Net trained on a single labeled pixel per image and (2) a U-Net image classifier transferred to segmentation can outperform pixel-level algorithms such as logistic regression, support vector machine, and random forest. While the high performance of neural networks is well-established for large datasets, our experiments indicate that U-Nets trained on weak labels outperform baseline methods with as few as 100 labels. Neural networks, therefore, can combine superior classification performance with efficient label usage, and allow pixel-level labels to be obtained from image labels.
Subject
General Earth and Planetary Sciences
Cited by
156 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献