Solar Energy Estimations in India Using Remote Sensing Technologies and Validation with Sun Photometers in Urban Areas

Author:

Masoom AkritiORCID,Kosmopoulos Panagiotis,Bansal Ankit,Kazadzis Stelios

Abstract

Solar radiation ground data is available in poor spatial resolution, which provides an opportunity and demonstrates the necessity to consider solar irradiance modeling based on satellite data. For the first time, solar energy monitoring in near real-time has been performed for India. This study focused on the assessment of solar irradiance from the Indian Solar Irradiance Operational System (INSIOS) using operational cloud and aerosol data from INSAT-3D and Copernicus Atmosphere Monitoring Service (CAMS)-Monitoring Atmospheric Composition Climate (MACC), respectively. Simulations of the global horizontal irradiance (GHI) and direct normal irradiance (DNI) were evaluated for 1 year for India at four Baseline Surface Radiation Network (BSRN) stations located in urban regions. The INSIOS system outputs as per radiative transfer model results presented high accuracy under clear-sky and cloudy conditions for GHI and DNI. DNI was very sensitive to the presence of cloud and aerosols, where even with small optical depths the DNI became zero, and thus it affected the accuracy of simulations under realistic atmospheric conditions. The median BSRN and INSIOS difference was found to vary from −93 to −49 W/m2 for GHI and −103 to −76 W/m2 for DNI under high solar energy potential conditions. Clouds were able to cause an underestimation of 40%, whereas for various aerosol inputs to the model, the overall accuracy was high for both irradiances, with the coefficient of determination being 0.99, whereas the penetration of photovoltaic installation, which exploits GHI, into urban environments (e.g., rooftop) could be effectively supported by the presented methodology, as estimations were reliable during high solar energy potential conditions. The results showed substantially high errors for monsoon season due to increase in cloud coverage that was not well-predicted at satellite and model resolutions.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference100 articles.

1. Estimation of global radiation using clearness index model for sizing photovoltaic system

2. Evaluation of Resource Risk in Solar-Project Financing

3. Solar Forecasting–Iacharya Silicon Limited https://www.iacharya.in/site/solar-forecasting/

4. Self Forecasting for Australian Solar Farms https://solcast.com/utility-scale/self-forecasting-for-australian-solar-farms/

5. Solar spectral influence on the performance of photovoltaic (PV) modules under fine weather and cloudy weather conditions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3