Evaluation of Coherent and Incoherent Landslide Detection Methods Based on Synthetic Aperture Radar for Rapid Response: A Case Study for the 2018 Hokkaido Landslides

Author:

Jung JungkyoORCID,Yun Sang-HoORCID

Abstract

Damage mapping using Synthetic Aperture Radar (SAR) imagery has been studied in recent decades to support rapid response to natural disasters. Many researches have been developing coherent and incoherent change detection. However, their performances can vary depending on the types of the damages, the characteristics of the scatterers and the corresponding capability of algorithms. In particular, the coherence-based methods have been used as promising detectors over urban areas where high coherences are observed, but their detection accuracies still remain controversial over the area where low coherences are mainly observed such as the 2018 Hokkaido landslides. In order to understand the characteristics of landslide (damage) detectors for low-coherence areas and find an alternative and complementary method, we designed the coherence difference, coherence normalized difference, log-ratio, intensity correlation difference, and normalized differences of the intensity correlation assuming limited availability of dataset, and also developed multi-temporal algorithms using the coherence, intensity, and intensity correlation. They were tested and evaluated using multiple polygons extracted from aerial photos. We were able to observe that the multi-temporal intensity correlation method has the potential to detect the landslides over the low coherence region and all types of land uses.

Funder

Jet Propulsion Laboratory

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3