Landslide Deformation Monitoring by Adaptive Distributed Scatterer Interferometric Synthetic Aperture Radar

Author:

Jia Hongguo,Zhang Hao,Liu Luyao,Liu Guoxiang

Abstract

Landslide is the second most frequent geological disaster after earthquake, which causes a large number of casualties and economic losses every year. China frequently experiences devastating landslides in mountainous areas. Interferometric Synthetic Aperture Radar (InSAR) technology has great potential for detecting potentially unstable landslides across wide areas and can monitor surface displacement of a single landslide. However traditional time series InSAR technology such as persistent scatterer interferometry (PSI) and small-baseline subset (SBAS) cannot identify enough points in mountainous areas because of dense vegetation and steep terrain. In order to improve the accuracy of landslide hazard detection and the reliability of landslide deformation monitoring in areas lacking high coherence stability point targets, this study proposes an adaptive distributed scatterer interferometric synthetic aperture radar (ADS-InSAR) method based on the spatiotemporal coherence of the distributed scatterer (DS), which automatically adjusts its detection threshold to improve the spatial distribution density and reliability of DS detection in the landslide area. After time series network modeling and deformation calculation of the ADS target, the displacement deformation of the landslide area can be accurately extracted. Shuibuya Town in Enshi Prefecture, Hubei Province, China, was used as a case study, along with 18 Sentinal-1A images acquired from March 2016 to April 2017. The ADS-InSAR method was used to obtain regional deformation data. The deformation time series was combined with hydrometeorological and related data to analyze landslide deformation. The results show that the ADS-InSAR method can effectively improve the density of DS distribution, successfully detect existing ancient landslide groups and determine multiple potential landslide areas, enabling early warning for landslide hazards. This study verifies the reliability and accuracy of ADS-InSAR for landslide disaster prevention and mitigation.

Funder

National Natural Science Foundation of China

Sichuan Science and Technology Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference43 articles.

1. Some catastrophic landslides since the twentieth century in the southwest of China;Huang;Landslides,2009

2. Integrated Monitoring Systems for Open Pit Wall Deformation;Ding,1998

3. Identification of a slope failure over a year before final collapse using multiple monitoring methods;Thompson,1993

4. Coupling of GPS/GNSS and radar interferometric data for a 3D surface displacement monitoring of landslides

5. Slope deformation character analysis based on monitoring results of multiple multi-point borehole extensometer;Huang;Chin. J. Rock Mech. Eng.,2009

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3