MACLA-LSTM: A Novel Approach for Forecasting Water Demand

Author:

Wang Ke12ORCID,Ye Zanting3,Wang Zhangquan1ORCID,Liu Banteng1,Feng Tianheng4

Affiliation:

1. College of Information Science and Technology, Zhejiang Shuren University, Hangzhou 310015, China

2. State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China

3. School of Computer and Artificial Intelligence, Changzhou University, Changzhou 213164, China

4. Sea Level (Hangzhou), Information Technology Co., Ltd., Hangzhou 310012, China

Abstract

Sustainable and effective management of urban water supply is a key challenge for the well-being and security of current society. Urban water supply systems have to deal with a huge amount of data, and it is difficult to develop efficient intervention mechanisms by relying on the human experience. Deep learning methods make it possible to predict water demand in real-time; however, deep learning methods have a large number of hyperparameters, and the selection of hyperparameters can easily affect the accuracy of prediction. Within this context, a novel framework of short-term water demand forecast is proposed, in which a forecasting method clouded leopard algorithm based on multiple adaptive mechanisms—long short-term memory networks (MACLA-LSTM)—is developed to improve the accuracy of water demand predictions. Specifically, LSTM networks are used to predict water demand and the MACLA is utilized to optimize the input parameters of the LSTM. The MACLA-LSTM model is evaluated on a real dataset sampled from water distribution systems. In comparison with other methods, the MACLA-LSTM achieved MAE values of 1.12, 0.89, and 1.09; MSE values of 2.22, 1.21, and 2.38; and R2 values of 99.51%, 99.44%, and 99.01%. The results show the potential of the MACLA-LSTM model for water demand forecasting tasks and also demonstrate the positive effect of the MACLA on forecasting tasks by comparing results with LSTM variant models. The proposed MACLA-LSTM can provide a resilient, sustainable, and low-cost management strategy for water supply systems.

Funder

Zhejiang Provincial Natural Science Foundation

the “Ling Yan” Research and Development Project of Science and Technology Department of Zhejiang Province of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3