A Novel Swarm Intelligence Algorithm with a Parasitism-Relation-Based Structure for Mobile Robot Path Planning

Author:

Ren Hui123,Gao Luli123ORCID,Shen Xiaochen123ORCID,Li Mengnan123,Jiang Wei123

Affiliation:

1. School of Information and Communication Engineering, Communication University of China, No.1 Dingfuzhuang East Street, Chaoyang District, Beijing 100024, China

2. State Key Laboratory of Media Convergence of Communication, Communication University of China, Beijing 100024, China

3. Key Laboratory of Acoustic Visual Technology and Intelligent Control System, Ministry of Culture and Tourism, Beijing 100024, China

Abstract

A multi-swarm-evolutionary structure based on the parasitic relationship in the biosphere is proposed in this paper and, according to the conception, the Para-PSO-ABC algorithm (ParaPA), combined with merits of the modified particle swarm optimization (MPSO) and artificial bee colony algorithm (ABC), is conducted with the multimodal routing strategy to enhance the safety and the cost issue for the mobile robot path planning problem. The evolution is divided into three stages, where the first is the independent evolutionary stage, with the same evolution strategies for each swarm. The second is the fusion stage, in which individuals are evolved hierarchically in the parasitism structure. Finally, in the interaction stage, a multi-swarm-elite strategy is used to filter the information through a predefined cross function among swarms. Meanwhile, the segment obstacle-avoiding strategy is proposed to accelerate the searching speed with two fitness functions. The best path is selected according to the performance on the safety and consumption issues. The introduced algorithm is examined with different obstacle allocations and simulated in the real routing environment compared with some typical algorithms. The results verify the productiveness of the parasitism-relation-based structure and the stage-based evolution strategy in path planning.

Funder

the National Key Research and Development Funding

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3