Hyperconnected Logistic Platform for Heavy-Duty Machinery: Leveraging Physical Internet Principles to Drive the Composting Industry

Author:

Cichocki Max1ORCID,Barenji Ali V.2ORCID,Montreuil Benoit2,Landschützer Christian1

Affiliation:

1. Institute of Logistics Engineering, Graz University of Technology, 8010 Graz, Austria

2. Physical Internet Center, School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

Abstract

The Physical Internet (PI) envisions a global logistics system that integrates physical, digital and operational connections. This study aims to develop a hyperconnected logistic platform for heavy-duty machinery (HDM) in the composting industry by utilizing a systematic methodology. The proposed architecture consists of four layers: the Domain Model, the MBSE Model, the Information Sharing Model and the Agent-based Simulation Platform. The Domain Model analyzes the current situation and investigates stakeholder viewpoints, and the MBSE Model reduces complexity and describes mutual interactions between requirements and needs. The Information Sharing Model focuses on the information exchange among the main components, and the Agent-based Simulation Platform implements the proposed platform. The feasibility of the proposed architecture is demonstrated through a use case in Styria, Austria. Three simulation-based scenarios are analyzed, starting from the semi-hyperconnected approach up to the hyperconnected approach with PI vision integration. The results indicate that the hyperconnected platform is successful in serving all composting facilities, leveraging underutilized resources and promoting high-quality compost production. Thus, the platform provides support in a local, communal setting, resulting in enhancing the circular economy within the composting sector. Our efforts aim to contribute to the realization of the Physical Internet vision and promote composting to ultimately achieve a more sustainable future.

Funder

Austrian Research Promotion Agency

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3