Spatially Non-Stationary Relationships between Changing Environment and Water Yield Services in Watersheds of China’s Climate Transition Zones

Author:

Cao ZheORCID,Zhu WeiORCID,Luo PingpingORCID,Wang Shuangtao,Tang Zeming,Zhang Yuzhu,Guo BinORCID

Abstract

Identifying the spatial and temporal heterogeneity of water-related ecosystem services and the mechanisms influencing them is essential for optimizing ecosystem governance and maintaining watershed sustainable development. However, the complex and undiscovered interplay between human activities and natural factors underpins the solutions to the water scarcity and flooding challenges faced by climate transition zone basins. This study used a multiple spatial-scale analysis to: (i) quantify the spatial and temporal variations of the water yield ecosystem service (WYs) of the Wei River Basin (WRB) from 2000 to 2020 using the InVEST model and remote sensing data; and (ii) look at how human activities, climate, topography, and vegetation affect the WYs at the climate transition zone sub-catchment scale using the geographical detector model and multi-scale geographically weighted regression (MGWR). The conclusive research reveals that there would be a gradual increase in WYs between the years 2000 and 2020, as well as a distinct and very different spatial aggregation along the climatic divide. The average yearly precipitation was shown to be particularly linked to the water yield of the WRB. The interplay of human, climatic, plant, and terrain variables has a substantially higher influence than most single factors on the geographical differentiation of WYs. Bivariate enhancement and non-linear enhancement are the most common types of factor interactions. This shows that there are significant interactions between natural and human variables. Our study shows that precipitation and temperature are the main factors that cause WYs in the semi-arid zone. In the semi-humid zone, precipitation and vegetation are the key controlling factors that cause WYs. We provide new perspectives for understanding and optimizing ecosystem management by comparing the drivers of WYS in sub-basins with different climatic conditions. Based on the findings, we recommend that particular attention should be paid to ecosystem restoration practices in watersheds in climatic transition zones.

Funder

Project of Ningxia Natural Science Foundation; National Key R&D Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3