Author:
Hou Zhengnan,Lv Xiaoxiao,Zhuang Shengxian
Abstract
Wind Turbines (WTs) are exposed to harsh conditions and can experience extreme weather, such as blizzards and cold waves, which can directly affect temperature monitoring. This paper analyzes the effects of ambient conditions on WT monitoring. To reduce these effects, a novel WT monitoring method is also proposed in this paper. Compared with existing methods, the proposed method has two advantages: (1) the changes in ambient conditions are added to the input of the WT model; (2) an Extreme Learning Machine (ELM) optimized by Genetic Algorithm (GA) is applied to construct the WT model. Using Supervisory Control and Data Acquisition (SCADA), compared with the method that does not consider the changes in ambient conditions, the proposed method can reduce the number of false alarms and provide an earlier alarm when a failure does occur.
Funder
National Key R&D Program of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献