Optimized Extreme Learning Machine-Based Main Bearing Temperature Monitoring Considering Ambient Conditions’ Effects

Author:

Hou Zhengnan,Lv Xiaoxiao,Zhuang Shengxian

Abstract

Wind Turbines (WTs) are exposed to harsh conditions and can experience extreme weather, such as blizzards and cold waves, which can directly affect temperature monitoring. This paper analyzes the effects of ambient conditions on WT monitoring. To reduce these effects, a novel WT monitoring method is also proposed in this paper. Compared with existing methods, the proposed method has two advantages: (1) the changes in ambient conditions are added to the input of the WT model; (2) an Extreme Learning Machine (ELM) optimized by Genetic Algorithm (GA) is applied to construct the WT model. Using Supervisory Control and Data Acquisition (SCADA), compared with the method that does not consider the changes in ambient conditions, the proposed method can reduce the number of false alarms and provide an earlier alarm when a failure does occur.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3