Affiliation:
1. School of Mechanical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
Abstract
Due to reduced manufacturing, transportation, and installation costs, the two-blade wind turbines (Two-BWT) are a viable option for offshore wind farms. So far, there is no mature design model for offshore Two-BWT. This paper proposes an aerodynamic design method for offshore Two-BWT blades using the blade element momentum (BEM) theory. This method calculates the power coefficient of the Two-BWT by analogy with the three-blade wind turbines (Three-BWT), and then determines the wind rotor diameter. Then, the airfoil, chord length, and twist angle are taken as the key design factors. Furthermore, the piecewise combination method (PCM) for airfoil distribution, the three-point sine method (Three-PSM) for chord length distribution, and the two-point sine method (Two-PSM) for torsion angle distribution are adopted, respectively. Subsequently, the minimum rotational speed, under the rated wind speed and rated power, is taken as the optimization objective to establish the optimization model. The global flow field of Two-BWT is constructed based on CFD technology, and the characteristics of wind speed distribution and blade pressure distribution in the flow field are investigated. Finally, the CFD results are compared with the results of the BEM theory, and the consistency of the results also shows the feasibility of the design method.
Funder
National Natural Science Foundation of People’s Republic of China
science and technology innovation Program of Hunan Province
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献