Optimisation of the FE Model Based on the No-Load Test Measurement for Estimating Electromagnetic Parameters of an Induction Motor Equivalent Circuit Including the Rotor Deep-Bar Effect

Author:

Rolek JaroslawORCID,Utrata GrzegorzORCID

Abstract

The various measurement procedures for determination of electromagnetic parameters for the induction motor (IM) equivalent circuits including the rotor deep-bar effect were proposed in the literature. One of them is the procedure based on the load curve test (LCT). Since the execution of the LCT can pose some difficulties, especially in industrial conditions, as an alternative, the finite element method (FEM) can be employed to simulate the IM operation under the LCT. In this work we developed the optimisation technique for the finite element (FE) model. This technique is performed with the use of the stator current space-vector components which determine the IM input active and reactive power consumption during no-load operation. Relying on the LCT simulation carried out with the optimised FE model the inductance frequency characteristic can be determined and then used as the reference characteristic in the electromagnetic parameter estimation for the IM equivalent circuit including the rotor deep-bar effect. The presented research results demonstrate proper conformity between the inductance frequency characteristics obtained from the LCT performed experimentally and determined by means of the optimised FE model. Satisfactory conformity is also achieved in the case of the torque-versus-slip frequency curves acquired from the measurement and calculated by the IM space-vector model with estimated electromagnetic parameters. All of this validates the effectiveness of the proposed technique for the FE-model optimisation and the usefulness of the presented approach using the FEM in the electromagnetic parameter estimation for the IM equivalent circuit including the rotor deep-bar effect.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3