Author:
Guo Yu,Chen Yue,Xie Yuanyan,Ban Xiaojuan
Abstract
Personalized education aims to provide cooperative and exploratory courses for students by using computer and network technology to construct a more effective cooperative learning mode, thus improving students’ cooperation ability and lifelong learning ability. Based on students’ interests, this paper proposes an effective student grouping strategy and group-oriented course recommendation method, comprehensively considering characteristics of students and courses both from a statistical dimension and a semantic dimension. First, this paper combines term frequency–inverse document frequency and Word2Vec to preferably extract student characteristics. Then, an improved K-means algorithm is used to divide students into different interest-based study groups. Finally, the group-oriented course recommendation method recommends appropriate and quality courses according to the similarity and expert score. Based on real data provided by junior high school students, a series of experiments are conducted to recommend proper social practical courses, which verified the feasibility and effectiveness of the proposed strategy.
Funder
China Postdoctoral Science Foundation
Scientific and Technological Innovation Foundation of Shunde Graduate School, USTB
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献