Classification in Early Fire Detection Using Multi-Sensor Nodes—A Transfer Learning Approach

Author:

Vorwerk Pascal1ORCID,Kelleter Jörg2,Müller Steffen2,Krause Ulrich1ORCID

Affiliation:

1. Faculty of Process- and Systems Engineering, Institute of Apparatus and Environmental Technology, Otto von Guericke University of Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany

2. GTE Industrieelektronik GmbH, Helmholtzstr. 21, 38-40, 41747 Viersen, Germany

Abstract

Effective early fire detection is crucial for preventing damage to people and buildings, especially in fire-prone historic structures. However, due to the infrequent occurrence of fire events throughout a building’s lifespan, real-world data for training models are often sparse. In this study, we applied feature representation transfer and instance transfer in the context of early fire detection using multi-sensor nodes. The goal was to investigate whether training data from a small-scale setup (source domain) can be used to identify various incipient fire scenarios in their early stages within a full-scale test room (target domain). In a first step, we employed Linear Discriminant Analysis (LDA) to create a new feature space solely based on the source domain data and predicted four different fire types (smoldering wood, smoldering cotton, smoldering cable and candle fire) in the target domain with a classification rate up to 69% and a Cohen’s Kappa of 0.58. Notably, lower classification performance was observed for sensor node positions close to the wall in the full-scale test room. In a second experiment, we applied the TrAdaBoost algorithm as a common instance transfer technique to adapt the model to the target domain, assuming that sparse information from the target domain is available. Boosting the data from 1% to 30% was utilized for individual sensor node positions in the target domain to adapt the model to the target domain. We found that additional boosting improved the classification performance (average classification rate of 73% and an average Cohen’s Kappa of 0.63). However, it was noted that excessively boosting the data could lead to overfitting to a specific sensor node position in the target domain, resulting in a reduction in the overall classification performance.

Funder

German Federal Ministry of Education and Research as part of the “Research for Civil Security” program

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3