Abstract
Fire early warning is an important way to deal with the faster burning rate of modern home fires and ensure the safety of the residents’ lives and property. To improve real-time fire alarm performance, this paper proposes an indoor fire early warning algorithm based on a back propagation neural network. The early warning algorithm fuses the data of temperature, smoke concentration and carbon monoxide, which are collected by sensors, and outputs the probability of fire occurrence. In this study, non-uniform sampling and trend extraction were used to enhance the ability to distinguish fire signals and environmental interference. Data from six sets of standard test fire scenarios and six sets of no-fire scenarios were used to test the algorithm proposed in this paper. The test results show that the proposed algorithm can correctly alarm six standard test fires from these 12 scenarios, and the fire detection time is shortened by 32%.
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献