Abstract
In the current trend of consumption, electricity consumption will become a very high cost for the end-users. Consumers acquire energy from suppliers who use short, medium, and long-term forecasts to place bids in the power market. This study offers a detailed analysis of relevant literature and proposes a deep learning methodology for forecasting industrial electric usage for the next 24 h. The hourly load curves forecasted are from a large furniture factory. The hourly data for one year is split into training (80%) and testing (20%). The algorithms use the previous two weeks of hourly consumption and exogenous variables as input in the deep neural networks. The best results prove that deep recurrent neural networks can retain long-term dependencies in high volatility time series. Gated recurrent units (GRU) obtained the lowest mean absolute percentage error of 4.82% for the testing period. The GRU improves the forecast by 6.23% compared to the second-best algorithm implemented, a combination of GRU and Long short-term memory (LSTM). From a practical perspective, deep learning methods can automate the forecasting processes and optimize the operation of power systems.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献