1. Tian, C., Ma, J., Zhang, C., Zhan, P.: A deep neural network model for short-term load forecast based on long short-term memory network and convolutional neural network. Energies 11(12), 3493 (2018)
2. Li, C., Ding, Z., Zhao, D., Yi, J., Zhang, G.: Building energy consumption prediction: An extreme deep learning approach. Energy 10(10), 1525 (2017)
3. Liu, X., Niu, Z., Yang, Y., Wu, J., Cheng, D., Wang, X.: VAP: a visual analysis tool for energy consumption spatio-temporal pattern discovery. In: 23rd International Conference on Extending Database Technology, pp. 579–582. OpenProceedings.org, Copenhagen, Denmark (2020)
4. Kim, T.Y., Cho, S.B.: Predicting residential energy consumption using CNN-LSTM neural networks. Energy 182, 72–81 (2019)
5. Siami-Namini, S., Tavakoli, N., Namin, A.-S.: A comparison of ARIMA and LSTM in forecasting time series. In: 17th IEEE International Conference on Machine Learning and Applications, pp. 1394–1401. IEEE, Florida, USA (2018)