An Investigation into the Effect of Emissions from Industrial Complexes on Air Quality in the Ulsan Metropolitan City Utilizing Trace Components in PM2.5

Author:

Choi Won JunORCID,Jung Bujeon,Lee Dongwon,Kang Hyunjung,Kim Hyosun,Hong Hyunkee

Abstract

This study investigates the impact of industrial complexes on the air quality in the Ulsan Metropolitan City, Korea, by analyzing the concentration of trace substances. Importantly, this study performs segmentation and analysis of the components of particulate matter for tracking emission sources. Concentrations of particulate matter with aerodynamic diameters ≤10 and ≤2.5 µm (PM10 and PM2.5, respectively) and 19 substances comprising PM2.5 (such as ions, carbon, and nine elements) were measured hourly during the year 2017 in the southeastern intensive air quality monitoring station of the National Institute of Environmental Research, Korea. This study identified and investigated the time periods during which the vanadium content in PM2.5 was higher than the annual mean (1.026 ng/µg) through selection cases (SCs). The annual mean concentrations of PM2.5 and PM10 were 18.50 and 32.35 µg/m3, respectively, and were higher (i.e., 26.54 and 45.84 µg/m3, respectively) in SCs. Notably, the concentrations were high even when the main wind direction of SCs was southeasterly, which was mainly the case in summer. Furthermore, the emission sources contributing to PM2.5 were estimated using the correlations of organic carbon, elemental carbon, zinc, iron, manganese, and titanium concentrations in the SCs. This study demonstrated that a detailed tracking of the emission sources at a local scale is possible by analyzing the composition of the components of PM2.5.

Funder

National Institute of Environmental Research

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3