A Low-Overhead Countermeasure against Differential Power Analysis for AES Block Cipher

Author:

Asfand Hafeez MuhammadORCID,Mazyad Hazzazi  MohammadORCID,Tariq HassanORCID,Aljaedi AmerORCID,Javed AsfaORCID,Alharbi Adel R.ORCID

Abstract

This paper presents the employment of a DPA attack on the NIST (National Institute of Standards and Technology) standardized AES (advance encryption standard) protocol for key retrieval and prevention. Towards key retrieval, we applied the DPA attack on AES to obtain a 128-bit secret key by measuring the power traces of the computations involved in the algorithm. In resistance to the DPA attack, we proposed a countermeasure, or a new modified masking scheme, comprising (i) Boolean and (ii) multiplicative masking, for linear and non-linear operations of AES, respectively. Furthermore, we improved the complexity involved in Boolean masking by introducing Rebecca’s approximation. Moreover, we provide a novel solution to tackle the zero mask problem in multiplicative masking. To evaluate the power traces, we propose our custom correlation technique, which results in a decrease in the calculation time. The synthesis results for original implementation (without countermeasure) and inclusion of countermeasure are given on a Zynq 7020 FPGA (Artix-7 device). It takes 424 FPGA slices when implemented without considering the countermeasure, whereas 714 slices are required to implement AES with the inclusion of the proposed countermeasure. Consequently, the implementation results provide the acceptability of this work for area-constrained applications that require prevention against DPA attacks.

Funder

Deanship of Scientific Research at King Khalid University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Role of Machine Learning in Power Analysis Based Side Channel Attacks on FPGA;2023 International Conference on Robotics and Automation in Industry (ICRAI);2023-03-03

2. Power profiling-based side-channel attacks on FPGA and Countermeasures: A survey;2022 2nd International Conference on Digital Futures and Transformative Technologies (ICoDT2);2022-05-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3