Experimental Comparison of Three Characterization Methods for Two Phase Change Materials Suitable for Domestic Hot Water Storage

Author:

Thonon Maxime,Zalewski LaurentORCID,Gibout StéphaneORCID,Franquet ErwinORCID,Fraisse Gilles,Pailha Mickael

Abstract

This study presents an experimental comparison of three characterization methods for phase change materials (PCM). Two methods were carried out with a calorimeter, the first with direct scanning (DSC) and the second with step scanning (STEP). The third method is a fluxmetric (FM) characterization performed using a fluxmeter bench. For the three methods, paraffin RT58 and polymer PEG6000, two PCM suitable for domestic hot water (DHW) storage, were characterized. For each PCM, no significant difference was observed on the latent heat and the total energy exchanged between the three characterization methods. However, DSC and STEP methods did not enable the accurate characterization of the supercooling process observed with the FM method for polymer PEG6000. For PEG6000, the shape of the enthalpy curve of melting also differed between the experiments on the calorimeter—DSC and STEP—methods, and the FM method. Concerning the PCM comparison, RT58 and PEG6000 appeared to have an equivalent energy density but, as the mass density of PEG6000 is greater, more energy is stored inside the same volume for PEG6000. However, as PEG6000 experienced supercooling, the discharging temperature was lower than for RT58 and the material is therefore less adapted to DHW storage operating with partial phase change cycles where the PCM temperature does not decrease below 52 °C.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3