Evaluation of Dimensional Changes during Postcuring of a Three-Dimensionally Printed Denture Base According to the Curing Time and the Time of Removal of the Support Structure: An In Vitro Study

Author:

Doh Re-MeeORCID,Kim Jong-EunORCID,Nam Na-Eun,Shin Seung-HoORCID,Lim Jung-Hwa,Shim June-SungORCID

Abstract

This study attempted to determine the dimensional stability of maxillary and mandibular edentulous denture bases constructed using three-dimensional (3D) printing systems based on stereolithography and digital light processing according to the postcuring treatment time and the removal time of the support structure. Three-dimensional printing of the designed denture base file was performed using two types of 3D printing photocurable resin (standard gray resin (Formlabs) (Somerville, MA, USA) and MAZIC D resin (Vericom) (Anyang, Korea)) and their compatible 3D printers (Form3 (Formlabs) and Phrozen Shuffle (Phrozen) (Hsinchu City, Taiwan)). Different postcuring times (no postcuring, and 15, 30, 45, and 60 min) and times of removal of the support structure were set for each group. Data relating to the denture bases in all groups were obtained using 3D scanning with a tabletop scanner after postcuring. All acquired data were exported to 3D analysis software, and the dimensional changes during postcuring of the denture base were analyzed using RMSE (root-mean-square error) values. It could be confirmed that the dimensional changes increased with postcuring time, and the accuracy was higher in the maxilla than in the mandible. The accuracy was highest for the group in which the postcuring process was performed while the support structure was present.

Funder

by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3