Post-Production Finishing Processes Utilized in 3D Printing Technologies

Author:

Kantaros Antreas1ORCID,Ganetsos Theodore1ORCID,Petrescu Florian2ORCID,Ungureanu Liviu2ORCID,Munteanu Iulian2

Affiliation:

1. Department of Industrial Design and Production Engineering, University of West Attica, 12244 Athens, Greece

2. “Theory of Mechanisms and Robots” Department, Faculty of Industrial Engineering and Robotics, National University of Science and Technology Polytechnic Bucharest, 060042 Bucharest, Romania

Abstract

Additive manufacturing (AM) has revolutionized production across industries, yet challenges persist in achieving optimal part quality. This paper studies the enhancement of post-processing techniques to elevate the overall quality of AM-produced components. This study focuses on optimizing various post-processing methodologies to address prevalent issues such as surface roughness, dimensional accuracy, and material properties. Through an extensive review, this article identifies and evaluates a spectrum of post-processing methods, encompassing thermal, chemical, and mechanical treatments. Special attention is given to their effects on different types of additive manufacturing technologies, including selective laser sintering (SLS), fused deposition modeling (FDM), and stereolithography (SLA) and their dedicated raw materials. The findings highlight the significance of tailored post-processing approaches in mitigating inherent defects, optimizing surface finish, and enhancing mechanical properties. Additionally, this study proposes novel post-processing procedures to achieve superior quality while minimizing fabrication time and infrastructure and material costs. The integration of post-processing techniques such as cleaning, surface finishing, heat treatment, support structure removal, surface coating, electropolishing, ultrasonic finishing, and hot isostatic pressing (HIP), as steps directly within the additive manufacturing workflow can immensely contribute toward this direction. The outcomes displayed in this article not only make a valuable contribution to the progression of knowledge regarding post-processing methods but also offer practical implications for manufacturers and researchers who are interested in improving the quality standards of additive manufacturing processes.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3