Space–Time Trade-Off of Precursory Seismicity in New Zealand and California Revealed by a Medium-Term Earthquake Forecasting Model

Author:

Rastin Sepideh J.ORCID,Rhoades David A.ORCID,Christophersen Annemarie

Abstract

The ‘Every Earthquake a Precursor According to Scale’ (EEPAS) medium-term earthquake forecasting model is based on the precursory scale increase (Ψ) phenomenon and associated scaling relations, in which the precursor magnitude MP is predictive of the mainshock magnitude Mm, precursor time TP and precursory area AP. In early studies of Ψ, a relatively low correlation between TP and AP suggested the possibility of a trade-off between time and area as a second-order effect. Here, we investigate the trade-off by means of the EEPAS model. Existing versions of EEPAS in New Zealand and California forecast target earthquakes of magnitudes M > 4.95 from input catalogues with M > 2.95. We systematically vary one parameter each from the EEPAS distributions for time and location, thereby varying the temporal and spatial scales of these distributions by two orders of magnitude. As one of these parameters is varied, the other is refitted to a 20-year period of each catalogue. The resulting curves of the temporal scaling factor against the spatial scaling factor are consistent with an even trade-off between time and area, given the limited temporal and spatial extent of the input catalogue. Hybrid models are formed by mixing several EEPAS models, with parameter sets chosen from points on the trade-off line. These are tested against the original fitted EEPAS models on a subsequent period of the New Zealand catalogue. The resulting information gains suggest that the space–time trade-off can be exploited to improve forecasting.

Funder

Strategic Science Investment Fund (SSIF) of the Ministry of Business, Innovation and Employment, New Zealand

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference30 articles.

1. Seismic Hazard Modeling for the Recovery of Christchurch

2. A Hybrid Time‐Dependent Probabilistic Seismic‐Hazard Model for Canterbury, New Zealand

3. Operational Earthquake Forecasting: State of Knowledge and Guidelines for Utilization;Jordan;Ann. Geophys.,2011

4. Earthquake Prediction and Warning

5. Earthquake prediction

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3