Lane-Level Road Extraction from High-Resolution Optical Satellite Images

Author:

Dai Jiguang,Zhu Tingting,Zhang Yilei,Ma Rongchen,Li Wantong

Abstract

High-quality updates of road information play an important role in smart city planning, sustainable urban expansion, vehicle management, urban planning, traffic navigation, public health and other fields. However, due to interference from road geometry and texture noise, it is difficult to avoid the decline of automation while accurately extracting roads. Therefore, we propose a high-resolution optical satellite image lane-level road extraction method. First, from the perspective of template matching and considering road characteristics and relevant semantic relations, an adaptive correction model, an MLSOH (multi-scale line segment orientation histogram) descriptor, a sector descriptor, and a multiangle beamlet descriptor are proposed to solve the interference from geometry and texture noise in road template matching and tracking. Second, based on refined lane-level tracking, single-lane and double-lane road-tracking modes are designed to extract single-lane and double-lane roads, respectively. In this paper, Pleiades satellite and GF-2 images are selected to set up different scenarios for urban and rural areas. Experiments are carried out on the phenomena that restrict road extraction, such as tree occlusion, building shadow occlusion, road bending, and road boundary blurring. Compared with other methods, the proposed method not only ensures the accuracy of lane-level road extraction but also greatly improves the automation of road extraction.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3